В \(\displaystyle 10\%\)-й раствор соли массой \(\displaystyle 500\) грамм добавили \(\displaystyle 4500\) граммов воды. Каков стал процент соли в новом растворе?
\(\displaystyle \%\)
Пусть в новом растворе стало \(\displaystyle x \%\) соли. Запишем соотношение:
в \(\displaystyle 500\) граммах | \(\displaystyle 10\%\) соли, | |
в \(\displaystyle 500+4500=5000\) граммах | \(\displaystyle x\%\) соли. |
Здесь соотносятся величины: \(\displaystyle {\rm A}\) – количество граммов раствора и \(\displaystyle {\rm B}\%\) – процентное содержание соли в растворе.
Признак обратной пропорции для задач с процентами
Величины \(\displaystyle {\rm A}\) и \(\displaystyle {\rm B}\%\) обратно пропорциональны, если доля, равная \(\displaystyle {\rm B}\%\) от числа \(\displaystyle {\rm A}{\small,}\) остается постоянной.
Другими словами, \(\displaystyle \frac{{\rm A}\cdot {\rm B}}{100}\) является постоянным числом при любых изменениях величин \(\displaystyle {\rm A}\) и \(\displaystyle {\rm B}\%{\small.}\)
По условию задачи \(\displaystyle 10\%\) от \(\displaystyle 500\) граммов равно количеству грамм соли в исходном растворе. В свою очередь, \(\displaystyle x\%\) от \(\displaystyle 5000\) граммов тоже равно количеству грамм соли в новом растворе. И поскольку количество грамм соли в растворе не меняется, то по признаку обратной пропорции данные величины обратно пропорциональны.
Также можно использовать определение обратной пропорции. Данные величины обратно пропорциональны, поскольку при увеличении общей массы раствора в несколько раз за счет добавления в него воды, во столько же раз в этом растворе уменьшается процентное содержание соли (так как по условию масса соли в растворе не изменяется).
Обратная пропорциональность
Пусть дана обратная пропорциональность:
\(\displaystyle a\) \(\displaystyle b{\small,}\)
\(\displaystyle c\) \(\displaystyle d{\small.}\)
Тогда можно записать следующее равенство:
\(\displaystyle a \cdot b=c \cdot d{\small.}\)
Тогда имеем:
\(\displaystyle 500\cdot 10=5000\cdot x{\small.}\)
Следовательно,
\(\displaystyle x=\frac{500\cdot 10}{5000}=1{\small.}\)
Ответ: \(\displaystyle 1\%{\small.}\)