Задание
Найдите значение выражения:
\(\displaystyle 18 \sqrt{2} \, \sin {30^\circ} \cos {45^\circ}=\)
Решение
Подставим табличные значения и упростим полученное числовое выражение:
Подсказка - табличные значения
\(\displaystyle \alpha\) | \(\displaystyle \frac{\pi}{6}(30^{\circ})\) | \(\displaystyle \frac{\pi}{4}(45^{\circ})\) | \(\displaystyle \frac{\pi}{3}(60^{\circ})\) |
\(\displaystyle \sin \alpha\) | \(\displaystyle \frac{1}{2}\) | \(\displaystyle \frac{\sqrt{2}}{2}\) | \(\displaystyle \frac{\sqrt{3}}{2}\) |
\(\displaystyle \cos \alpha\) | \(\displaystyle \frac{\sqrt{3}}{2}\) | \(\displaystyle \frac{\sqrt{2}}{2}\) | \(\displaystyle \frac{1}{2}\) |
\(\displaystyle \tg \alpha\) | \(\displaystyle \frac{\sqrt{3}}{3}\) | \(\displaystyle 1\) | \(\displaystyle \sqrt{3}\) |
\(\displaystyle \ctg \alpha\) | \(\displaystyle \sqrt{3}\) | \(\displaystyle 1\) | \(\displaystyle \frac{\sqrt{3}}{3}\) |
\(\displaystyle 18 \sqrt{2} \, \color{blue}{\sin {30^\circ}} \color{orange}{ \cos {45^\circ}}=18 \sqrt{2}\cdot \color{blue}{\frac {1}{2}}\cdot \color{orange}{\frac {\sqrt{2}}{2}}= \frac {18 \sqrt{2}\cdot\sqrt{2}}{2\cdot 2}=9.\)
Ответ: \(\displaystyle 9 {\small.} \)